Managing Data in Motion: Data Integration Best Practice Techniques and Technologies
by April Reeve

Managing Data in Motion: Data Integration Best Practice Techniques and Technologies<br>by April Reeve
Item# 0123971675
List price: $49.95
Softpro Price: $44.96

Managing Data in Motion describes techniques that have been developed for significantly reducing the complexity of managing system interfaces and enabling scalable architectures. Author April Reeve brings over two decades of experience to present a vendor-neutral approach to moving data between computing environments and systems. Readers will learn the techniques, technologies, and best practices for managing the passage of data between computer systems and integrating disparate data together in an enterprise environment.

The average enterprise's computing environment is comprised of hundreds to thousands computer systems that have been built, purchased, and acquired over time. The data from these various systems needs to be integrated for reporting and analysis, shared for business transaction processing, and converted from one format to another when old systems are replaced and new systems are acquired.

The management of the "data in motion" in organizations is rapidly becoming one of the biggest concerns for business and IT management. Data warehousing and conversion, real-time data integration, and cloud and "big data" applications are just a few of the challenges facing organizations and businesses today. Managing Data in Motion tackles these and other topics in a style easily understood by business and IT managers as well as programmers and architects.

  • Presents a vendor-neutral overview of the different technologies and techniques for moving data between computer systems including the emerging solutions for unstructured as well as structured data types
  • Explains, in non-technical terms, the architecture and components required to perform data integration
  • Describes how to reduce the complexity of managing system interfaces and enable a scalable data architecture that can handle the dimensions of "Big Data"




Unless otherwise noted above, most orders ship within 1 to 2 days. We will promptly notify you if there is a stock problem with any items on your order and provide you with an estimated delivery date. If you have a firm need by date, please provide such information in the comment section at checkout.

Publisher: Elsevier/Morgan Kaufmann
Page Count (est.): 204
ISBN10: 0123971675
ISBN13: 9780123971678
Cover: Paperback
Pub Date: 3/29/2013